Correlación del agua corporal total con la edad en pacientes con y sin diabetes mellitus tipo-2 en la población peruana
DOI:
https://doi.org/10.53732/rccsalud/2023.e5122Keywords:
body water, diabetes mellitus, type 2, correlation of data, aging, PeruAbstract
Introduction. The decrease in body water is a physiologically natural process linked to the advancement of age; diabetes could increase this relationship. Objective. To analyze the degree of correlation between the percentage of total body water with age in adults with and without type 2 diabetes mellitus in the Peruvian population. Material and Methods. Observational, analytical, retrospective and cross-sectional study. The data came from the national demographic survey of the year 2022. The population was 29,737 adults, of which 16,956 are women and 12,781. The sample was the total population surveyed. The variables were: type-2 diabetes mellitus, total body water (ACT), percentage of body water, sex, age. The tests used were Pearson's chi-square, Cramer's V and Spearman's correlation. Results: The percentage of adults with low percentage levels of total body water was more frequent in diabetics than in non-diabetics. In Cramer's V association test, statistically significant associations were found, which were of a greater effect in men than in women with and without diabetes. In diabetic men, age and ACT correlated moderately and negatively (Rho=-0.601), in non-diabetics, it correlated low and negatively (Rho=-0.237). In diabetic women, the correlation is low and negative (Rho=-0.308), while in non-diabetics it is very low (Rho=-0.056). Conclusions. There is a greater negative correlation between age and total body water in diabetics than in non-diabetics of both sexes.
References
Goyal R, Singhal M, Jialal I. Type 2 Diabetes. 2023 Jun 23. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. 2023. https://pubmed.ncbi.nlm.nih.gov/30020625/
Reed J, Bain S, Kanamarlapudi V. A review of current trends with type 2 diabetes epidemiology, aetiology, pathogenesis, treatments and future perspectives. Diabetes Metab Syndr Obes. 2021;14:3567–602. https://doi.org/10.2147/DMSO.S319895
Tanase DM, Gosav EM, Costea CF, Ciocoiu M, Lacatusu CM, Maranduca MA, et al. The intricate relationship between type 2 diabetes mellitus (T2DM), insulin resistance (IR), and nonalcoholic fatty liver disease (NAFLD). J Diabetes Res. 2020;2020:3920196. https://doi.org/10.1155/2020/3920196
Demant M, Bagger JI, Suppli MP, Lund A, Gyldenløve M, Hansen KB, et al. Determinantes de la hiperglucagonemia en ayunas en pacientes con diabetes tipo 2 y sujetos control no diabéticos. Metab Syndr Relat Disord. 2018;16(10):530–6. http://dx.doi.org/10.1089/met.2018.0066
Gembillo G, Ingrasciotta Y, Crisafulli S, Luxi N, Siligato R, Santoro D, et al. Enfermedad renal en pacientes diabéticos: De la fisiopatología a los aspectos farmacológicos con foco en la inercia terapéutica. Int J Mol Sci. 2021;22(9):4824. http://dx.doi.org/10.3390/ijms22094824
Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, et al. Pathophysiology of type 2 Diabetes Mellitus. Int J Mol Sci. 2020;21(17):6275. https://doi.org/10.3390/ijms21176275
Shah A, Isath A, Aronow WS. Cardiovascular complications of diabetes. Expert Rev Endocrinol Metab. 2022;17(5):383–8. https://doi.org/10.1080/17446651.2022.2099838
Lovic D, Piperidou A, Zografou I, Grassos H, Pittaras A, Manolis A. The growing epidemic of diabetes mellitus. Curr Vasc Pharmacol. 2020;18(2):104–9. https://doi.org/10.2174/1570161117666190405165911
Carrillo-Larco RM, Bernabé-Ortiz A. Diabetes mellitus tipo 2 en Perú: una revisión sistemática sobre la prevalencia e incidencia en población general. Rev Peru Med Exp Salud Publica. 2019;36(1):26–36. http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1726-46342019000100005
Pérez-Morales R, Donate-Correa J, Martín-Núñez E, Pérez-Delgado N, Ferri C, López-Montes A, et al. Extracellular water/total body water ratio as predictor of mortality in hemodialysis patients. Ren Fail. 2021;43(1):821–9. https://pubmed.ncbi.nlm.nih.gov/33966595/
Rosinger AY. Biobehavioral variation in human water needs: How adaptations, early life environments, and the life course affect body water homeostasis. Am J Hum Biol. 2020;32(1). https://pubmed.ncbi.nlm.nih.gov/31631450/
White U, Ravussin E. Dynamics of adipose tissue turnover in human metabolic health and disease. Diabetologia. 2019;62(1):17–23. http://dx.doi.org/10.1007/s00125-018-4732-x
Tian X, Chen Y, Yang Z-K, Qu Z, Dong J. Novel equations for estimating lean body mass in patients with chronic kidney disease. J Ren Nutr. 2018;28(3):156–64. https://doi.org/10.1053/j.jrn.2017.09.004
Hommos MS, Glassock RJ, Rule AD. Structural and functional changes in human kidneys with healthy aging. J Am Soc Nephrol. 2017;28(10):2838–44. http://dx.doi.org/10.1681/asn.2017040421
Schloerb PR, Friis-Hansen BJ, Edelman IS, Solomon AK, Moore FD. The measurement of total body water in the human subject by deuterium oxide dilution. J Clin Invest. 10 1950;29(10):1296–310. https://www.jci.org/articles/view/102366
Kenney WL, Chiu P. Influence of age on thirst and fluid intake. Med Sci Sports Exerc. 2001;33(9):1524. https://journals.lww.com/acsm-msse/Fulltext/2001/09000/Influence_of_age_on_thirst_and_fluid_intake.16.aspx
Liamis G. Diabetes mellitus and electrolyte disorders. World J Clin Cases. 2014;2(10):488. http://dx.doi.org/10.12998/wjcc.v2.i10.488
Bjornstad P, Greasley PJ, Wheeler DC, Chertow GM, Langkilde AM, Heerspink HJL, et al. The potential roles of osmotic and nonosmotic sodium handling in mediating the effects of sodium-glucose cotransporter 2 inhibitors on heart failure. J Card Fail. 2021;27(12):1447–55. https://doi.org/10.1016/j.cardfail.2021.07.003
Gallardo Castro JA, Zapata Negreiros JA, Lluncor Vásquez JO, Cieza Zevallos JA. Evaluación del agua corporal medida por bioimpedancia eléctrica en adultos jóvenes sanos y su correlación estimada según formulaciones convencionales. Rev Medica Hered. 2016;27(3):146–51. http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1018-130X2016000300005
Martina Chávez M, Amemiya Hoshi I, Suguimoto Watanabe SP, Arroyo Aguilar RS, Zeladita-Huaman JA, Castillo Parra H. Depresión en adultos mayores en el Perú: distribución geoespacial y factores asociados según ENDES 2018 - 2020. An Fac Med (Lima Peru : 1990). 2022;83(3):180–7. http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1025-55832022000300180
Furusho M, Weng J, Mori T, Wang T. Impact of hydration and nutrition status on the Watson formula in peritoneal dialysis patients. Adv Perit Dial [Internet]. 2014;30:110-4. https://pubmed.ncbi.nlm.nih.gov/25338431/
Lu H, Ayers E, Patel P, Mattoo TK. Body water percentage from childhood to old age. Kidney Res Clin Pract [Internet]. 2023;42(3):340–8. https://pubmed.ncbi.nlm.nih.gov/37313612/
Hooper L, Bunn D, Jimoh FO, Fairweather-Tait SJ. Water-loss dehydration and aging. Mech Ageing Dev. 2014;136–137:50–8. https://pubmed.ncbi.nlm.nih.gov/24333321/
Kottner J, Lichterfeld A, Blume-Peytavi U. Transepidermal water loss in young and aged healthy humans: a systematic review and meta-analysis. Arch Derm Res. 2013;305(4):315–23. https://pubmed.ncbi.nlm.nih.gov/23341028/
Aronica L, Rigdon J, Offringa LC, Stefanick ML, Gardner CD. Examining differences between overweight women and men in 12-month weight loss study comparing healthy low-carbohydrate vs. low-fat diets. Int J Obes (Lond). 2021;45(1):225–34. https://pubmed.ncbi.nlm.nih.gov/33188301/
Raman A, Schoeller DA, Subar AF, Troiano RP, Schatzkin A, Harris T, et al. Water turnover in 458 American adults 40-79 yr of age. Am J Physiol Renal Physiol. 2004;286(2):F394–401. http://dx.doi.org/10.1152/ajprenal.00295.2003
Usala R. Hyponatremia is associated with increased osteoporosis and bone fractures in diabetics with matched glycemic control: Supplemental materials. 2018; https://repository.library.georgetown.edu/handle/10822/1052819
Wilkinson DJ, Piasecki M, Atherton PJ. The age-related loss of skeletal muscle mass and function: Measurement and physiology of muscle fibre atrophy and muscle fibre loss in humans. Ageing Res Rev. 2018;47:123–32. https://www.sciencedirect.com/science/article/pii/S156816371830134X
Perry BD, Caldow MK, Brennan-Speranza TC, Sbaraglia M, Jerums G, Garnham A, et al. Muscle atrophy in patients with Type 2 Diabetes Mellitus: roles of inflammatory pathways, physical activity and exercise. Exercise immunology review. 2016;22:94-109. https://www.ncbi.nlm.nih.gov/pubmed/26859514
Lyons-Reid J, Ward LC, Kenealy T, Cutfield W. Bioelectrical impedance analysis—an easy tool for quantifying body composition in infancy? Nutrients. 2020;12(4):920. http://dx.doi.org/10.3390/nu12040920