Efecto de la cirugía bariátrica sobre el metabolismo de lipoproteínas ricas en triglicéridos

Authors

DOI:

https://doi.org/10.53732/rccsalud/01.01.2019.57

Keywords:

Obesidad, cirugía bariátrica, insulinoresistencia, triglicéridos, lipoproteínas ricas en triglicéridos

Abstract

La resistencia a la insulina, la diabetes tipo 2 y la obesidad, se caracterizan por un aumento en las lipoproteínas ricas en triglicéridos debido a la reducción del catabolismo de TRL de la circulación y al aumento de la producción hepática (apoB-100 que contiene VLDL) e intestinal (apoB-48 que contiene quilomicrones). La cirugía bariátrica es el único tratamiento actualmente que provoca a una pérdida de peso marcada y sostenida. Aquí, repasaremos los efectos de la cirugía bariátrica en los triglicéridos circulantes / TRL La cirugía bariátrica conduce a una marcada reducción de triglicéridos en ayuno y posprandial. Los datos disponibles sugieren que la cirugía bariátrica reduce la producción de triglicéridos y TRL intestinal y hepático con una mayor depuración de las partículas hepáticas de TRL. Algunos estudios de cirugía bariátrica han reportado una correlación débil entre la pérdida de peso y las mejoras en triglicéridos / TRL, lo que sugiere que factores como GLP-1 más allá de la pérdida de peso pueden contribuir a los cambios marcados en TRL que ocurren posterior a la cirugía posbariátrica. También se necesitan estudios adicionales para comparar los efectos de diversos procedimientos de cirugía bariátrica en la cinética de TRL para dilucidar los mecanismos subyacentes.

References

Ogden CL. Disparities in obesity prevalence in the United States: black women at risk. Am J Clin Nutr. 2009 Apr;89(4):1001-2. Doi: https://doi.org/10.3945/ajcn.2009.27592

Kelly T, Yang W, Chen CS, Reynolds K, He J. Global burden of obesity in 2005 and projections to 2030. Int J Obes (Lond). 2008 Sep;32(9):1431-7. Doi:10.1038/ijo.2008.102

Sjöström L, Lindroos AK, Peltonen M, Torgerson J, Bouchard C, Carlsson B, et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004 Dec 23;351(26):2683-93. Doi: 10.1056/NEJMoa035622

Buchwald H, Estok R, Fahrbach K, Banel D, Jensen MD, Pories WJ, et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med. 2009 Mar;122(3):248-256.e5. Doi: 10.1016/j.amjmed.2008.09.041

About obesity. London (UK): International Association for the Studyof Obesity; 2002.

Yanovski, S. Z. Overweight, obesity, and health risk: National Task Force on the Prevention and Treatment of Obesity. Rev. Archives of Internal Medicine. 2000; 160(7): 898-904. Doi:10.1001/archinte.160.7.898

Fontaine KR, Redden DT, Wang C, Westfall AO, Allison DB. Years of life lost due to obesity. JAMA. 2003 Jan 8;289(2):187-93. Doi: 10.1001/jama.289.2.187

Dandona P, Aljada A, Chaudhuri A, Mohanty P, Garg R. Metabolic syndrome: a comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circulation. 2005 Mar 22;111(11):1448-54. Doi: 10.1161/01.CIR.0000158483.13093.9D

Knopp RH, d'Emden M, Smilde JG, Pocock SJ. Efficacy and safety of atorvastatin in the prevention of cardiovascular end points in subjects with type 2 diabetes: the Atorvastatin Study for Prevention of Coronary Heart Disease Endpoints in non-insulin-dependent diabetes mellitus (ASPEN). Diabetes Care. 2006 Jul;29(7):1478-85. Doi: 10.2337/dc05-2415

Twickler TB, Dallinga-Thie GM, Cohn JS, Chapman MJ. Elevated remnant-like particle cholesterol concentration a characteristic feature of the atherogenic lipoprotein phenotype. Circulation. 2004; 109(16): 1918-1925. Doi:

https://doi.org/10.1161/01.CIR.0000125278.58527.F3

Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen A. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA. 2007 Jul 18;298(3):299-308. Doi:

1001/jama.298.3.299

Obesity and overweight. Fact Sheet No 311. Geneva (Switzerland): World Health Organization; 2011.

Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu CY, at al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation. 2007 Jul 3;116(1):39-48.. Doi: 10.1161/CIRCULATIONAHA.106.675355

Dunn FL. Hyperlipidemia in diabetes mellitus. Diabetes/metabolism reviews. 1990; 6(1):47-61. Doi: 10.1002/dmr.5610060103

Couillard C, et al. Evidence for impaired lipolysis in abdominally obese men: postprandial study of apolipoprotein B-48–and B- 100–containing lipoproteins. The American journal of clinical nutrition. 2002; 76(2): 311-318. Doi: 10.1093/ajcn/76.2.311

Duez H, et al. Hyperinsulinemia is associated with increased production rate of intestinal apolipoprotein B-48–containing lipoproteins in humans. Arteriosclerosis, thrombosis, and vascular biology. 2006; 26(6): 1357-1363. Doi:

https://doi.org/10.1161/01.ATV.0000222015.76038.14

Shojaee-Moradie F, et al. Prandial hypertriglyceridemia in metabolic syndrome is due to an overproduction of both chylomicron and VLDL triacylglycerol. Rev. Diabetes. 2013; 62(12): 4063-4069. Doi:10.2337/db13-0935

Rashid S, et al. Mechanisms of HDL lowering in insulin resistant, hypertriglyceridemic states: the combined effect of HDL triglyceride enrichment and elevated hepatic lipase activity. Rev. Clinical biochemistry. 2003; 36(6): 421-429. Doi: 10.1016/s0009-9120(03)00078-x

Mero N, et al. Postprandial metabolism of apolipoprotein B-48-and B-100-containing particles in type 2 diabetes mellitus: relations to angiographically verified severity of coronary artery disease. Rev. Atherosclerosis. 2000; 150(1): 167-177. Doi: 10.1016/s0021-9150(99)00364-0

Greene D J, Skeggs J W, Morton R E. Elevated triglyceride content diminishes the capacity of high density lipoprotein to deliver cholesteryl esters via the scavenger receptor class B type I (SR-BI). Journal of Biological Chemistry. 2001; 276(7): 4804-4811. Doi: 10.1074/jbc.M008725200

Skeggs J W, Morton R E. LDL and HDL enriched in triglyceride promote abnormal cholesterol transport. Journal of lipid research. 2002; 43(8): 1264-1274. Disponible en: https://pubmed.ncbi.nlm.nih.gov/12177170/

The Emerging Risk Factors Collaboration. Lipid-Related Markers and Cardiovascular Disease Prediction. Rev. JAMA. 2012; 307(23):2499-2506. Doi: 10.1001/jama.2012.6571

Miller M, et al. Triglycerides and cardiovascular disease a scientific statement from the American Heart Association. Rev. Circulation, 2011; 123(20): 2292-2333. Doi: 10.1161/CIR.0b013e3182160726

Berroeta G C, Davidsson P. Contribución de la apolipoproteína CIII a la aterogenicidad de las dislipidemias. Rev. Clínica e Investigación en Arteriosclerosis. 2012; 24(5): 252-260. Doi: 10.1016/j.arteri.2012.02.006

Mendivil CO, Rimm EB, Furtado J, Chiuve SE, Sacks FM. Lowdensity lipoproteins containing apolipoprotein C-III and the riskof coronary heart disease. Rev. Circulation. 2011; 124(19):2065-72. Doi: 10.1161/CIRCULATIONAHA.111.056986

Ooi, E., et al. Apolipoprotein C-III: understanding an emerging cardiovascular risk factor. Rev. Clinical science. 2008; 114(10): 611-624. Doi: 10.1042/CS20070308

Caron S, Steals B. Apolipoprotein CIII A Link Between Hypertriglyceridemia and Vascular Dysfunction?. Rev. Circulation research. 2008; 103(12): 1348-1350. Doi: 10.1161/CIRCRESAHA.108.189860

Davidsson P, Hulthe J, Fagerberg B, Olsson B, Hallberg C, DahllofB, et al. A proteomic study of the apolipoproteins in LDLsubclasses in patients with the metabolic syndrome and type 2 diabetes. J Lipid Res. 2005; 46(9):1999-2006. Doi: 10.1194/jlr.M500161-JLR200

Kawakami A, Aikawa M, Alcaide P, Luscinskas FW, Libby P,Sacks FM. Apolipoprotein CIII induces expression of vascularcell adhesion molecule-1 in vascular endothelial cells andincreases adhesion of monocytic cells. Rev. Circulation. 2006; 114:681- 7. Doi: 10.1161/CIRCULATIONAHA.106.622514

Kawakami A, Yoshida M. Apolipoprotein CIII links dyslipidemia with atherosclerosis. J Atheroscler Thromb.2009;16(1):6-11. Doi:10.5551/jat.e607

Steinbrook R. Surgery for severe obesity. New England Journal of Medicine. 2004; 350(11):1075-1078. Doi: 10.1056/NEJMp048029

Sabrena N F, Grantcharov T. Biological effects of bariatric surgery on obesity-related comorbidities. Canadian Journal of Surgery. 2013; 56(1):47-57. Doi: 10.1503/cjs.036111

Poirier P, et al. Bariatric surgery and cardiovascular risk factors a Scientific Statement from the American Heart Association. Rev. Circulation. 2011; 123(15): 1683-1701. Doi: 10.1161/CIR.0b013e3182149099

Guo X, et al. The effects of bariatric procedures versus medical therapy for obese patients with type 2 diabetes: meta-analysis of randomized controlled trials. Rev. BioMed research international. 2013. Doi:

https://doi.org/10.1155/2013/410609

Dixon, J B, O'Brien P E. Lipid Profile in the Severely Obese: Changes with Weight Loss after Lap Band Surgery. Rev. Obesity research. 2002; 10(9): 903-910. Doi: 10.1038/oby.2002.124

Nguyen NT, Varela E, Sabio A, Tran CL, Stamos M, Wilson SE. Resolution of hyperlipidemia after laparoscopic Roux-en-Y gastric bypass. J Am Coll Surg. 2006 Jul;203(1):24-9. Doi: 10.1016/j.jamcollsurg.2006.03.019

Padilla N, Maraninchi M, Béliard S, Berthet B, Nogueira JP, Wolff E, Nicolay A, Bégu A, Dubois N, Grangeot R, Mattei C, Vialettes B, Xiao C, Lewis GF, Valéro R. Effects of bariatric surgery on hepatic and intestinal lipoprotein particle metabolism in obese, nondiabetic humans. Arterioscler Thromb Vasc Biol. 2014 Oct;34(10):2330-7. Doi:

https://doi.org/10.1161/ATVBAHA.114.303849

Waldmann E, Hüttl TP, Göke B et al. Effect of sleeve gastrectomy on postprandial lipoprotein metabolism in morbidly obese patients. Lipids Health Dis 12, 82 (2013). https://doi.org/10.1186/1476-511X-12-82

Padilla N, Maraninchi M, Béliard S, Berthet, B, Nogueira, J-P, Wolff E, Nicolay A, Bégu A, Dubois N, Grangeot R, et al. Effects of bariatric surgery on hepatic and intestinal lipoprotein particle metabolism in obese, nondiabetic humans. Arterioscler. Thromb. Vasc. Biol. 2014; 34(10), 2330–2337. Doi: https://doi.org/10.1161/ATVBAHA.114.303849

Lebovitz H E. Metabolic Surgery for Type 2 Diabetes with BMI< 35 kg/m2. Rev. Obesity surgery. 2013; 23(6): 800-808. Doi: 10.1007/s11695-013-0907-1

Sjöström L, Peltonen M, Jacobson P, Sjöström CD, Karason K, Wedel H, et al. Bariatric surgery and long-term cardiovascular events. JAMA. 2012 Jan 4;307(1):56-65. Doi: 10.1001/jama.2011.1914

Sjöström L. Review of the key results from the Swedish Obese Subjects (SOS) trial–a prospective controlled intervention study of bariatric surgery. Journal of internal medicine. 2013; 273(3): 219-234. Doi:

1111/joim.12012

Geltner C, Lechleitner M, Föger B, Ritsch A, Drexel H, Patsch JR. Insulin improves fasting and postprandial lipemia in type 2 diabetes. Eur J Intern Med. 2002 Jun;13(4):256-263. Doi: 10.1016/s0953-6205(02)00038-9

Maraninchi M, Padilla N, Béliard S, Berthet B, et al. Impact of bariatric surgery on apolipoprotein C-III levels and lipoprotein distribution in obese human subjects. J. Clin. Lipidol. 2017; 11(2): 495–506. Doi: 10.1016/j.jacl.2017.02.012

Rubino F. Bariatric surgery: effects on glucose homeostasis. Current Opinion in Clinical Nutrition & Metabolic Care, 2006; 9(4):497-507. Doi: 10.1097/01.mco.0000232914.14978.c5

Buchwald H, et al. Bariatric surgery: a systematic review and meta-analysis. Rev. Jama. 2004; 292(14): 1724-1737. Doi: 10.1001/jama.292.14.1724

Ponce J, et al. Effect of Lap-Band-induced weight loss on type 2 diabetes mellitus and hypertension. Obesity surgery. 2004; 14(10): 1335-1342. Doi: 10.1381/0960892042583932

Ebert R, Creutzfeldt W. Gastrointestinal peptides and insulin secretion. Diabetes/metabolism reviews. 1987; 3(1): 1-26. Doi: 10.1002/dmr.5610030101

Bose M, et al. Do Incretins play a role in the remission of type 2 diabetes after gastric bypass surgery: What are the evidence? Obesity surgery. 2009; 19(2): 217-229. Doi: 10.1007/s11695-008-9696-3

Basso N, et al. First-phase insulin secretion, insulin sensitivity, ghrelin, GLP-1, and PYY changes 72 h after sleeve gastrectomy in obese diabetic patients: the gastric hypothesis. Surgical endoscopy. 2011; 25(11): 3540-3550- Doi: 10.1007/s00464-011-1755-5

Karamanakos S N, et al. Weight loss, appetite suppression, and changes in fasting and postprandial ghrelin and peptide-YY levels after Roux-en-Y gastric bypass and sleeve gastrectomy: a prospective, double blind study. Annals of surgery. 2008; 247(3): 401-407. Doi: 10.1097/SLA.0b013e318156f012

Scott W R, Batterham R L. Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy: understanding weight loss and improvements in type 2 diabetes after bariatric surgery. American Journal of Physiology- Regulatory, Integrative and Comparative Physiology. 2011; 301(1): 15-27. Doi: 10.1152/ajpregu.00038.2011

Kashyap S R, et al. Bariatric surgery for type 2 diabetes: weighing the impact for obese patients. Cleveland Clinic journal of medicine. 2010; 77(7):468-476. Doi: 10.3949/ccjm.77a.09135

Hady H R, et al. Original paper Impact of laparoscopic sleeve gastrectomy on body mass index, ghrelin, insulin and lipid levels in 100 obese patients. 2012- 7(4):251-59. Doi: 10.5114/wiitm.2011.28979

Vetter M L, et al. Comparison of bariatric surgical procedures for diabetes remission: efficacy and mechanisms. Diabetes Spectrum. 2012; 25(4):200-210. Doi: 10.2337/diaspect.25.4.200

Published

2019-05-27

How to Cite

Nogueira, J. P. (2019). Efecto de la cirugía bariátrica sobre el metabolismo de lipoproteínas ricas en triglicéridos. Revista científica Ciencias De La Salud, 1(1), 57–69. https://doi.org/10.53732/rccsalud/01.01.2019.57